

The Role of Polyphase Folding in the Distribution of Gold: Insights

B. Lacroix, **P.J. Hainque**, A. Hauteville, D. Lahondès, E. Le Goff, D. Fournier, C. Bertoni, S. Taravella, K. Robo, M. de Witasse

from the Guiana Shield

Combes et al. (2021)

Distribution of poles controlled by:

- Orientation of axial surface F1/F2
- Interlimb angles F1/F2
- Fold vergence

Map view

Map view

D2

Distribution of poles controlled by:

- Orientation of axial surface F1/F2
- Interlimb angles F1/F2
- Fold vergence

N = 138

D1

MULTSCALE INTEGRATION

Integration of different datasets

Aeromagnetic survey

Field work

Identification of Exploration Targets

Structural and geological maps

Structural analysis

LOCATIONS

Most of the high-grade intersection seem to be controlled by bedding-parallel vein system occurring during D_1 folding

Presentation – Bertoni et al. (Today at 3:30 PM)

Distribution in agreement with Type-2 fold superposition

Block diagram model using collected data

11

EW sections characterized by simple apparent folded axial plane

NS sections characterized by incongruous fold geometry

The studied deposits consist to typical orogenic gold systems – Vein related

Delor et al. (2003)

The studied deposits consist to typical orogenic gold systems – Vein related

17

Model of mineralization – D₁ folding event

SYNTHESIS – ALL LOCATIONS

-	TECTONIC EVENTS		1200				The second se
	D1	D2	Fold superposition pattern	A	Venezuela	- a the	0 N 500 Km
OKO WEST	WNW-ESE tectonic stress Regional N020 folding Top-to-the west kinematic Development of S1 Bedding-parallel veins (SV1) + Extension veins (EV1) N020 mineralization system	NE-SW tectonic stress EW fold overprint EW Foliation S2 Remobilization of Au along D2 hinges	Type-2 interference pattern	5° N- Columbia			West Dieu Merci Boulanger
$\bigcirc 2$			Type a interference pattern				A fundation opping
DIEU MERCI	N-S tectonic stress Regional EW folding Development of S1	E-W tectonic stress NS fold overprint NS foliation S2	Type-s Interference pattern	0° N - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	65° W	SV C C C C C C C C C C C C C C C C C C C	55° W
BOULANGER	NNE-SSW tectonic stress Regional Folding (P1) Emplacement of EV-SV Structures oriented N110 S1 oriented N110	WNW-ESE tectonic stress Dextral mouvment	Type-1 interference pattern			Tede: Krooi	schi et al. (2020) nenberg et a. (2016)
CRIQUE SOPHIE	WSW-ENE tectonic stress WSW-ENE tectonic stress Regional N350 folding Top-to-the east kinematic Development of S1	NNW-SSE tectonic stress	Type-2 interference pattern				21

SO WHAT?

Au enrichment along F2 axial surface - Type 1

SO WHAT?

Magnetic Susceptibility – DIEU MERCI

23

SO WHAT?

Magnetic Susceptibility – DIEU MERCI

- Magnetic susceptibility confirms the presence of polyphase folding \rightarrow type 2
- Also supported by measured fold axis (black arrows)
- Former extraction zones (Virgile ouest and centre, Ovide) spatially correlated to fold hinges \rightarrow possible endowment during D₂

CONCLUSIONS

- Clear evidences that Rhyacian greenstone belts are affected by polyphase folding → So do the mineralization
- Typical orogenic gold system formed during D1 (shortening) followed by D2 (transcurrent?)
- Gold enrichment during second folding stage (remobilization?, new mineralizing fluid?)
- Quantitative structural geology approach can be used to constrain the interference patterns and ore shoot
- Also allows to better interpret drill sections, resource models, geophysical data

CONCLUSIONS

- Clear evidences that Rhyacian greenstone belts are affected by polyphase folding → So do the mineralization
- Typical orogenic gold system formed during D1 (shortening) followed by D2 (transcurrent?)
- Gold enrichment during second folding stage (remobilization?, new mineralizing fluid?)
- Quantitative structural geology approach can be used to constrain the interference patterns and ore shoot
- Also allows to better interpret drill sections, resource models, geophysical data

GEXPLORE SERVICES GÉOLOGIQUES ET GÉOPHYSIQUES

GexplOre

Centre d'activités Ariane 240 Rue de Cumène 54230 Neuves-Maisons Tél : +33 (0) 6 03 67 05 14 Tél : +33 (0) 3 72 47 07 50 contact@gexplore.fr elegoff@gexplore.fr

THANKS FOR YOUR ATTENTION

