

Complex 3D Integration for Mineral Exploration

Eric de Kemp Geological Survey of Canada

Complex Data Integration

CDI = MMI

- Multi-scalar
- Multi-parameter
- Iterative

Central Camp

Greenfields Exploration

" Greenfields Exploration is the process whereby broad target areas are selected on the basis of favorable geology and/or geophysics with little or no evidence of the target mineralization".

CET ~ 2006

Beyond the headframe ...

Greenfields

Chart 3. World Metal Production (1995=1)

Figure 4: Initial Resource Values

Note: As defined in S&P Global Market Intelligence's Monthly Industry Monitor, initial resources include initial estimates for both new deposits and new zones at mines and projects with previously defined reserves and/or resources.

S&P GLOBAL MARKET INTELLIGENCE

- Increasing consumption and production
- Depletion of finite resource

Extraction of minerals

SERI (2011): Global resource extraction by material category 1980–2008. http://www.materialflows.net

Metals for the Low Carbon

Economy

- Increased demand;
- Copper
- Aluminum
- Nickel
 - Au H₂ Fuel Cells Electronics

Electric Vehicles:

Cobalt **x30** Lithium Copper Aluminum Nickel **x2** Energy Storage: (1000%) Aluminum Cobalt Iron Lead Lithium Manganese Nickel

Solar Photovoltaics: (300%) Aluminum Copper Indium Iron Lead Molybdenum Nickel Silver Zinc Wind: (250%) Aluminum Chromium Copper Iron Lead Manganese Molybdenum Neodymium Nickel Zinc

Information from summary article by Carrie Carlson – *FEECO International* on; *The Growing Role of Minerals and Metals for a Low Carbon Future*. Report, Washington, DC: The World Bank Group, 2017.

Greenfields

 Many major giant class ore deposits were once in a Greenfields setting.

Discovery site of nickel-copper ore 1883, Copper Cliff – Sudbury Camp.

Edmund Henry Horne 1864-1953 Discovered ore ~1920, that led to development of the Giant Horne Mine, Rouyn-Noranda, Québec

Courtesy Mines Branch Government of Newfoundland and Labrador

Exploration camp – Michelin property – Central Mineral Belt, Labrador.

Greenfields – Galactic Scale

- Not necessarily linear function of investment
- Technology and practice impact critical
- Discoveries in < 25 years... from 0 to ~ 4000

Greenfields – Search for Exoplanets

Transiting Exoplanet Survey Satellite (TESS)
85% Sky coverage
Wide off axis (40°) orbit

Launch April 18, 2018 200,000 stars – 2 years

Data

Multi-scalar

- Multi-parameter
- Iterative

Knowledge of star and planetary genesis

3D Mine Modelling

3D Multi-Parameter Container

3D Modelling of the Purcell Basin

Sears J Geological Society of America Special Papers 2007;433:147-166

"A project to make a 3D regional model – beyond the head frame..."

Goodfellow and Lydon 2007

SEDEX System

Modern Red Sea and Dune Fields

'Barcode' siltite markers provide unique 3D modelling constraints in hanging wall of the Sullivan horizon

Sullivan horizon (contact between Middle – Lower Aldridge Formation = LMC)

John Lydon 2015

SEDX - Sedimentary Exhalative mineral system

Multi-Parameter

Purcell 3D Faults

-2000

Sea

nei 5000

Moyie thrust

Map trace of fault

Line 11

Offset Moyie Dyke reflectors

Iterative

Structures

Stratigraphic Markers

Regional Uncertainty

Montsion 2017

Discontinuities

Spatial Integration

Regional 3D Modelling Challenge, Purcell anticlinorium

Spatial Continuity - Estimation

Orientation and Direction Data

Structural Observations

Knowledge

Structural style, fold parameters, etc.

Geologic constraints: types and abundance

Implicit Modelling Approach (SURFE)

Hillier, Schetselaar, deKemp, GSC, Mathematical Geosciences 2015

Surface is extracted by tracing equipotentials from a 3D scalar distance function

Predictive Region Model

LMC

Sullivan ore body

From J.J. Wilkinson 2014

de Kemp et al., 2016, Interpretation, Vol. 4, No. 3, p. SM33-SM50 http://dx.doi.org/10.1190/INT-2015-0191.1.

Propagation techniques

Regional (camp) Scale

Vector field integration – field observations Cross-section form lines for tie-lining F2 Fold prediction

Caopatina Formation – Abitibi Greenstone de Kemp, 2000 (Enhanced Magnetics 100 m flight lines, 25 m grid)

Ressources naturelles Natural Resources Canada Canada

Greenfields

Data is precious... Knowledge is essential

Dense Flin Flon lithostratigraphic drill core logs. Courtesy Ernst Schetselaar (GSC)

Dr. Kendrick Taylor (Desert Research Institute - Reno) examining Antarctic ice core. <u>www.dri.edu</u>

Earth Model Space

Reasonable Models ?

Geologic relationships

Folded gneiss. Teton Range, Wyoming. Courtesy of Marli Bryant Miller, Eugene, Oregon, marlimiller@earthlink.net Downloaded from http://marlimillerphoto.com/contact.html

3D Earth Imaging and modelling

Geologic relationships and complexity

G

F

Е

D

С

В

G

F

Е

"Need to quantify complexity of the 3D geologic Model" Pellerin et al. 2014

Geologic Topology Diagrams

D C

 younger

 G
 F
 E
 D

 G
 0
 -1
 0
 0

 F
 1
 0
 -1
 0

 E
 0
 1
 0
 0

 D
 0
 0
 0
 0

 O
 0
 0
 10
 1

 B
 0
 0
 10
 0

 A
 0
 0
 10
 0

 Scenario 3

 Younger
 H
 G
 F
 E

 H
 O
 0
 -20
 -20
 -20
 -20
 -20

 G
 0
 0
 -1
 0
 -1
 -1

0

0

0

0

0

0

-10

0

0

-1

0

0 0

-10 -10

0 -1

D

Scenario 4

younger									
		н	G	F	E	D	С	В	A
older	Н	0	0	-20	-20	-30	-50	-20	0
	G	0	0	-1	0	0	0	0	0
	F	20	1	30	-1	0	0	0	0
	E	20	0	1	30	0	-10	-10	-40
	D	30	0	0	0	30	-31	0	0
	С	50	0	0	10	31	30	-1	0
	В	20	0	0	10	0	1	30	-1
	A	0	0	0	40	0	0	1	30

Feature Adjacency Matrices

Diagram Modified from Burns 1976, Theille 2016

Complex Data Integration Benefits to companies

- Reduces risk in mineral exploration.
- Enables synthesizing of multi-disciplinary knowledge.
- Maximizes return on expensive exploration data, (Legacy data).
- Offers a context for deeper geologic targeting.
- Provides more opportunities for predictive 3D mapping and targeting.
- Provides a more rigorous basis for exploration decision-making.
- Promotes and focuses teamwork and expertise.
- Consolidates corporate knowledge as an asset in a dynamic repository (evergreen strategy).
- Highlights data and interpretive uncertainties.
- Streamlines analysis of large data volumes (Big Data).

Multi-scale, Multi-Parameter, Iterative

3D Workflow of the future...

- Multi-scaler (outcrop to global, mine regional integration)
- Multi-Parameter (geophysics geology geochemistry)
- Circular workflow (many updateable models)
- Challenging terrains (Sparse-Regional)
- Uncertainty Modelling
- Geological Reasonableness (All the Data + Knowledge; GeoEvent History)
- Simulation Process Coupled Implicit+
- Collaboration Practice **M** = f(Geophysics:Geology)

Summary

Greenfields is where we need to go.

 Crew that stays in the harbor discovers nothing. The farther we sail the greater the reward!

"It's not that I'm so smart, it's just that I stay with problems longer." Albert Einstein

SAXI - The South American Exploration Initiative

Summary

- Greenfields is where we need to go.
- There are abundant benefits with data integration.
- Complex geology and sparse data should not stop us.

Tools and active research going on (ie. loop3d.org).

- Invest in the infrastructure, staffing and technologies
 Enhance your organization
- Needs collaboration competition...(ie. SAXI)

Greenfields

- New approaches and technology is needed to reduce risk
- Key technologies:
 - Deep imaging Seismic, MT, Gravity
 - Near surface Magnetics, Gravity (FTG)
 - Structural Integration Vector field visualization
 - GIS integration and reconciliation (2D & 3D)
 - Geophysics Geology
 - Geochemical Geophysics
 - 3D Modelling –Geophysical Inversion, Implicit modelling
 - Uncertainty assessment and modelling
 - Knowledge and Data driven 3D simulation