

INCORPORATED IN JERSEY, CHANNEL ISLANDS

Kingston University London

WEST AFRICAN OROGENIC GOLD DEPOSITS: DO THEY FIT THE GLOBAL PARADIGM?

PETER J TRELOAR KINGSTON UNIVERSITY

5#0 520 560

DAVID LAWRENCE, JAMES LAMBERT-SMITH, DIAMACOUR SENGHOR, KEN KING, MICHAEL WIEDENBECK AND ADRIAN BOYCE

WHAT ARE OROGENIC GOLD DEPOSITS?

- The most abundant producer of gold on Earth
- Mesothermal rather then epithermal epigenetic ore deposits
- Temporally linked to periods of crustal growth in accretionary or collisional orogens

Kingston University

londor

- Struturally controlled, steeply dipping ore lodes commonly located in allochthonous terranes characterised by strike slip faults
- Regional first order strike-slip structures provide the main control of deposit distribution with greatest ore fluxes in higher order shears, faults, and folds
- Generated in metamorphic terrains and hosted in greenschist facies mafic rocks, volcanic or intrusive, or clastic sediments
- The standard model suggests that they form from deep seated low salinity H₂O -CO₂ + CH₄ + N₂ metamorphic fluids that carry Au-Ag + As + B + Bi + Sb + Te + W (low base metal)

CREWY RD. DO.

Tectonic Settings of Epigenetic Gold Deposits

Kingston University London

Herrington after Groves et al. (2003. Econ Geol)

GROVES & GOLDFARB 2015

QUESTIONS

Where have models for orgenic gold mineralisation taken us? Are models that imply a metamorphic origin for orogenic gold fluids correct?

3. What are the potential roles of magmatic fluids in orogenic⁶go deposits?

Regional geology of the KKI

Yalea Open Pit 2010

Gounkoto Open Pit - 2014

GARA - ORE MINERALOGY

Kingston University London

Loulo, West Mali: Gara stockwork in quartz-tourmaline rock Quartz and carbonate veins with pyrite

MULTI-STAGE TOURMALINE GENERATION AT GARA

MINERAL PARAGENESIS

Ni-Co sulphides at Yalea North

Mineral	Pre-ore stage	Main ore stage	Post-main ore stage	Supergene
- Wall-rock alteration E-stage tourmaline M-stage tourmaline L-stage tourmaline Rhodochrosite Quartz Albite Ankerite Hematite				
 Vein material Type I quartz Type I calcite Type II quartz Type II ankerite Type III quartz Gangue Rutile 				
Apatite Chlorite Ilmenite				
- Ore-related phases Pyrite Chalcopyrite-I Gersdorffite Pentlandite Pyrrhotite Arsenopyrite Molybdenite Monazite Xenotime Scheelite Uraninite/ Sayrite				
Gold - Supergene Leucoxene				
Limonite Geothite				

Mineral Paragenesis at Gara

cm

5

YALEA MINERAL PARAGENESIS

Albitic QR alteration

Ductile textures (rich in carbonate)

YALEA – KEY ORE MINERALOGY

LOULO, LOW SALINITY FLUID INCLUSIONS

Kingston University London

Type 1 mono- or bi-phase CO₂ inclusions (60-90%)

Type 2 rare I+v H₂O inclusions (<5%)

Type 3 mixed CO₂-H₂O inclusions (5-12%)

LOW SALINITY FLUIDS

Kingston University London

- This range of fluids is seen elsewhere in the Birimian
- Fluid immiscibility (Coulibaly et al., 2008) +/or post-entrapment modifications (e.g. Klemd et al., 1997)
- Low salinity H₂O-CO₂ fluids common for orogenic Au deposits and generally suggested to represent a metamorphic fluid source???

Summary of Fl work from Ghana, Burkina Faso & Cote d'Ivoire

GARA HYPERSALINE FLUID INCLUSIONS (LAWRENCE ET AL. 2013

Kingston University London

FIG. 3. (Cont.)

GARA

CRACKED HYPSERSALINE FLUID INCLUSIONS

Gara

- Tourmaline rich
- Fe-REE-As-Ni-Co-Au<u>+</u>Cu<u>+</u>W
- Pyrite dominant sulfide
- Aspy, cpy, gersdorffite, pentlandite, pyrrotite, cobaltite, monazite, xenotime, scheelite
- Qtz-cc veins
- Abundant High salinity fluid inclusions

Yalea

- Tourmaline poor
- Fe-As-Cu-W-Pb-Sb-Au-Ag
- Pyrite-arsenopyrite rich
- Asp + py + scheelite + late Cu minerals + Pb minerals (absence of tourmaline, REE and Ni-Co sulphides)
- Carb phyllic alteration
- No high salinity fluid inclusions

Figure 14

Massawa

Massawa deposit is hosted in:

- A. Volcaniclastic agglomerate
- B. Greywackes
- C. Graphitic schists
- D. Gabbro
- E. Feldspar Porphyrys some mineralised and some notF. Ductile, carbonate-sericite-quartz alteration zone

Three mineralising events

 Ore stage 1 (replacive qtz, ser, ank, pyr, aspyr, Au
 Barren qz- molybdenite veins
 Ore stage 2 (quartz-stibnite-Au)

Main Ore Phase Stage 1:

A: Ankerite-sericite-quarz alteration; B: Asp after Pyr; C: Pyr after Asp; E: Asp after Pyr; F: Au in Asp; H: Au in qtz.

MINERAL PARAGENESIS

Qtz-Molybenite veining at Massawa: Stage 2

Kingston

London

University

A: Qtz intergrown with stibnite; B: stibnite-chalcostibite-quartz; C: stibnite associated with aurostibite and native gold; D: Stibnite intergrown with sphalerite, gold and zinkerite

(A)

Mineral	Pre-ore stage	Ore stage 1	Moly veins	Ore stage 2
- Wall-rock alteration Quartz Ankerite Dolomite Sericite				
- Non-sulphide vein phases Quartz Ankerite Calcite	<u> </u>		2.	3.
- Sulphide and other phases Pyrite	1	2.	3	4
Arsenopyrite Stibnite	1	<u> 1. 2.</u> . 2.	3.	<u>3.</u> <u>4.</u>
Molybdenite Tetrahedrite		2.		3.
Sphalerite Native Sb				
Chalcostibite Robinsonite				
Kosnchinite Jamesonite Zinkenite				
Aurostibite Gold				

(B) Mineral Pre-ore Ore stage Post-ore stage stage - Wall-rock alteration Quartz Ankerite Dolomite Sericite Chlorite - Non-sulphide vein phases 2 Quartz Calcite - Sulphide and other phases 2. 1. Pyrite 2. 1. Arsenopyrite 2. 1. Tetrahedrite Gersdorffite Cobaltite Galena Apatite Monazite Xenotime Gold

30 µm

Typical Metamorphic Fluids

Type 1.

NB

Ore stage 1 15 – 33% Mol% CH₄

Ore Stage 2 10 – 15% Mol% CH₄

Type 2 2 – 8% NaCl

LOULO STABLE ISOTOPES: LAWRENCE ET AL 2013

MASSAWA SULPHUR ISOTOPE DATA

LE stibnite

10

Sulphur Isotope data overlap for all stages. (NB diagenetic sulfides in the KKI have δ^{34} S values of 6 – 15 ‰)

9

8

Frequency

3

2

1

0 ·

0

2

3

4

∂34S

5

6

7

More

Kingston University London

Morila Sulphur Isotope Data

Morila

McFarlane et al. 2011

STABLE ISOTOPES

Kingston University London

Birimian Gara Massawa -Yalea Faraba NW P64 Loulo 3 Loulo Background Loulo - Obuasi - Presta Bogusu Morila Background Ashanti Θ Tongon NZ Tongon SZ Yvette Tongon Tongon East SE Morila Ore Zone Morlia Low Grade Ashanti Morila Regional Masaw a CZ Massaw a CZ Stibinite -30 -20 10 20 -10 0 Massaw a NZ

Variation in sulfide S isotope compositions in sediment hosted orogenic gold deposits through time and seawater sulfate curve (Chang, 2008, Geology)

STABLE ISOTOPES

Kingston University London

Birimian Gara Massawa -Yalea Faraba NW P64 Loulo 3 Loulo Background Loulo - Obuasi - Presta Bogusu Morila Background Ashanti Θ Tongon NZ Tongon SZ Yvette Tongon Tongon East SE Morila Ore Zone Morlia Low Grade Ashanti Morila Regional Masaw a CZ Massaw a CZ Stibinite -30 -20 10 20 -10 0 Massaw a NZ

SMSZ - BORON SOIL CHEMISTRY

BORON ISOTOPE DATA – LAMBERT-SMITH 2014

Kingston

London

University

Figure 8.11: Histogram of δ¹¹B data from hydrothermal and magmatic tourmaline in the Kofi Series and the Falémé Volcanic Belt (n=100).

CONCLUSIONS

- West African Orogenic Gold deposits do not have a one size fits all model – different mineralogies, fluid chemistries and isotope signatures
- Hypersaline fluids can be derived from metamorphic reactions
- Boron does not necessarily mean magmatic
- Not all orogenic gold deposits are sourced from metamorphic fluids
 - The Gara and Yalea deposits at Loulo (bizarrely given the B and Cl levels) are likely sourced from metamorphic fluids
 - S isotope data at Massawa, together with field relations, speak of magmatic fluids
 - Morila is a RIRGS