Metamorphic evolution of the southern West African Craton

L. Baratoux1,2, S. Block1, J. Ganne1, S. Perrouty1, L. Siebenaller1, D. Béziat1, J. Davis1, E. Dioh2, A. Fontaine3, P.M. Ndiaye4, J. Miller5, M. W. Jessell1,5

1GET IRD UPS, 2IFAN, 3Uni Lorraine, 4UCAD, 5UWA
Metamorphism is key to understanding geodynamic evolution of the orogen

Hyndman et al., 2005

Brown, 2007
Ore deposits form in various geodynamic settings
Archean vs. modern type orogens

Plate tectonics
- Yilgarn (Australie)
- WA (Ghana)
 - ~2.7 Ga
- Chardon et al. (2008)
- Peschler et al. (2006)
- Vidal et al. (2009)
- Feybesse et al. (2006)

Crustal scale folding
- Abitibi (Canada)
 - ~2.7 Ga
- Chardon et al. (2008)

Lateral crustal flow
- Dharwar (Inde)
 - ~2.5 Ga
- Goscombe et al. (2009)

Vertical tectonics “sagduction”
- WA (Côte d’Ivoire)
 - ~2.1 Ga
- Vidal et al. (2009)
Metamorphism in Precambrian orogens

• Precambrian orogens are “hot” but greenschist to amphibolite facies rocks are very common

• Upper crustal levels predominate, lower (granulite facies) crust only rarely exposed: example of Dhawar craton, India (tilted) (e.g. Jayananda et al., 2013)

• Eclogite facies metamorphism (Barberton, e.g. Moyen et al., 2006) (subduction - exhumation)

• Contrasted metamorphic P-T paths and non-unique geodynamic setting (Yilgarn, e.g. Goscombe et al., 2009)

• Paleoproterozoic rocks of the West African Craton: the youngest “Archean-type” orogen or one the oldest modern-type orogen?
WAXI 2 Metamorphic database

- >70 data
- >600 data

WAXI and related projects
Published data (article, conference abstract)
Metamorphism of the WAC

• Greenschist facies prevailing, amphibolite facies only within the contact aureoles of the plutons (e.g. Debat et al., 2003, Vidal et al., 2009)

• Migmatites (T > 650 °C) found in S Ghana, Ivory Coast (Opare-Addo et al., 1993)

• High grade metamorphism (PT) limited to the Archean-Proterozoic boundary – collision zone (Pitra et al., 2010)
E Burkina Faso

Chlorite-mica multiequilibria

Cold geothermal gradient

Subduction setting

Ganne et al., 2012
S Ghana

Birimian volcano-sediment from Wassa gold deposit

Tarkwaian metasediment from Damang gold deposit

groups of phengite (Phg)

\[P \text{ (kbar)} \]

\[T \text{ (°C)} \]

GH512
S Mali – Morila gold deposit

[S image of rock sample with labels Bt, Grt, Pl]

[Temperature-pressure (P-T) diagram with peaks and mineral assemblages]

[Graphical representation of mineral assemblages and peak P-T conditions]

Peak P-T assemblage:
Bt + Chl + Ms + Grt + Pl + Qtz + IIm +/- Zoi
N Ghana

Block et al., in review
N Ghana

![Diagram showing P-T equilibrium conditions and geological map of N Ghana](image-url)

- **P-T equilibrium conditions**
 - Greenschist facies
 - Amphibolite facies
 - Amph./Granulite
 - Amph./Blueschist
 - Green./Blueschist

- **Geological map**
 - High-strain zone
 - Normal Shear zone
 - Greeneschist facies
 - Amphibolite facies
 - Migmatitic rock
 - Eclogitic relic

- **Location**
 - National Center for Geomatics, NPM
 - Bui belt
 - Ahulembire terrain
 - Volta basin

- **Geological Features**
 - Birrimian Belt
 - Whittemore Belt
 - Nsuaem Belt
 - Navrongo-Tama granulite domain
 - Kossiogho-Tamale granulite domain

- **Map Scale**
 - 1:500,000
 - 1:200,000

- **Legend**
 - Lithological boundary
 - P-T data points

Timing of metamorphism

Published metamorphic ages

<table>
<thead>
<tr>
<th>Country</th>
<th>Location</th>
<th>Lithology</th>
<th>Age (Ma)</th>
<th>Mineral dated</th>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Senegal</td>
<td>Dialé-Daléma Series</td>
<td>metasediments</td>
<td>2165±1</td>
<td>Zircon</td>
<td>U–Pb</td>
<td>Hirdes and Davis, 2002</td>
</tr>
<tr>
<td>E Senegal</td>
<td>Dialé-Daléma Series</td>
<td>metasediments</td>
<td>2156±10</td>
<td>Zircon</td>
<td>Pb–Pb, Zt evaporation</td>
<td>Calvez et al., 1990</td>
</tr>
<tr>
<td>N Ghana</td>
<td>Maluwe basin</td>
<td>granodiorite</td>
<td>2105±10</td>
<td>Zircon</td>
<td>U-Pb SHREIMP</td>
<td>de Kock et al., 2009</td>
</tr>
<tr>
<td>S Ghana</td>
<td>Kibi belt</td>
<td>BIF paragneiss calc silicate</td>
<td>2104±34</td>
<td>hbl, pl, grt</td>
<td>Sm-Nd</td>
<td>Feybesse et al., 2006</td>
</tr>
<tr>
<td>N Ghana</td>
<td>Bolé-Navrongo belt</td>
<td>monzogranite</td>
<td>2104±31</td>
<td>Zircon</td>
<td>U-Pb SHREIMP</td>
<td>Thomas et al., 2009</td>
</tr>
<tr>
<td>N Ivory Coast</td>
<td>Haute Comoé</td>
<td>granodioritic gneiss</td>
<td>2100±3</td>
<td>Titanite</td>
<td>U–Pb TIMS</td>
<td>Hirdes et al., 1996</td>
</tr>
<tr>
<td>S Ghana</td>
<td>Ashanti belt</td>
<td>granitoid</td>
<td>2098±7</td>
<td>Rutile-galena</td>
<td>Pb–Pb</td>
<td>Oberthür et al., 1998</td>
</tr>
<tr>
<td>N Ghana</td>
<td>Bolé-Navrongo belt</td>
<td>granite</td>
<td>2098±4</td>
<td>Zircon</td>
<td>U-Pb SHREIMP</td>
<td>Thomas et al., 2009</td>
</tr>
<tr>
<td>E Senegal</td>
<td>Dialé-Daléma Series</td>
<td>metasediments</td>
<td>2096±8</td>
<td>Zircon</td>
<td>Pb–Pb, Zt evaporation</td>
<td>Milési et al., 1989</td>
</tr>
<tr>
<td>S Ghana</td>
<td>Sefwi Group</td>
<td>amphibolite</td>
<td>2095±34</td>
<td>Hornblende</td>
<td>K–Ar</td>
<td>Feybesse et al., 2006</td>
</tr>
<tr>
<td>S Ghana</td>
<td>Ashanti belt</td>
<td>granitoid</td>
<td>2092±3</td>
<td>Sphene</td>
<td>U–Pb TIMS</td>
<td>Oberthür et al., 1998</td>
</tr>
<tr>
<td>S Ghana</td>
<td>Ashanti belt</td>
<td>granitoid</td>
<td>2086±4</td>
<td>Rutile-galena</td>
<td>Pb–Pb</td>
<td>Oberthür et al., 1998</td>
</tr>
<tr>
<td>E Senegal</td>
<td>Saraya Pluton</td>
<td>granite</td>
<td>2064±4</td>
<td>Monazite</td>
<td>U–Pb</td>
<td>Hirdes and Davis, 2002</td>
</tr>
<tr>
<td>S Ghana</td>
<td>Tarkwa strata</td>
<td>metasediments</td>
<td>2063±9</td>
<td>Xenotime (hydrothermal)</td>
<td>U-Pb SHREIMP</td>
<td>Pigois et al., 2003</td>
</tr>
<tr>
<td>S Ghana</td>
<td>Tarkwa strata</td>
<td>metasediments</td>
<td>2034±4</td>
<td>Biotite</td>
<td>Ar–Ar</td>
<td>Pigois et al., 2003</td>
</tr>
<tr>
<td>SW Ivory Coast</td>
<td>Ity-Toulepleu area</td>
<td>metasediments</td>
<td>2031±9</td>
<td>Grt, WR</td>
<td>Sm-Nd</td>
<td>Koumelan et al., 1997</td>
</tr>
<tr>
<td>S Ghana</td>
<td>Tarkwa strata</td>
<td>metasediments</td>
<td>2029±4</td>
<td>Biotite</td>
<td>Ar–Ar</td>
<td>Pigois et al., 2003</td>
</tr>
</tbody>
</table>

- Many of the metamorphic ages come from granitoids
- Only three ages related to a metamorphic study (Kouamelan et al., 1997; Pitra et al., 2010) (Feybesse et al., 2006) (Block et al., 2015)
- Several ages have very high errors, K-Ar and Ar-Ar systems often remobilized
- No age from Burkina Faso, Mali, Niger, Guinea...
Monazite dating
Monazite dating

In situ LA ICP-MS

- **BN 43**
 - Concordia age: 2137.1 ± 7.6 Ma
 - MSWD: 0.25
 - $n = 10$

- **BN 47**
 - Concordia age: 2127.0 ± 7.4 Ma
 - MSWD: 0.87
 - $n = 11$

In situ SHRIMP

- **BN 43**
 - Upper intercept: 2138.2 ± 6.7 Ma
 - MSWD: 1.3
 - $n = 17$
 - Concordia age: 2141.4 ± 6.6 Ma
 - MSWD: 1.3
 - $n = 8$

- **BN 47**
 - Upper intercept at 2130.2 ± 6.4 Ma
 - MSWD: 1.3
 - $n = 17$

Block et al., 2015
Monazite dating

- BN43 – 2137 ± 8 Ma ; 2138 ± 7 Ma
- BN47 – 2127 ± 7 Ma ; 2130 ± 6 Ma
- BN436 – 2131 ± 6 Ma

-> age of HT metamorphic phase

Block et al., 2015
Temperatures

Legend

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Facies</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 200</td>
<td>Greenschist</td>
</tr>
<tr>
<td>201 - 300</td>
<td>Upper greenschist</td>
</tr>
<tr>
<td>301 - 400</td>
<td>Amphibolite</td>
</tr>
<tr>
<td>401 - 500</td>
<td>Upper amphibolite facies</td>
</tr>
<tr>
<td>501 - 600</td>
<td>Contact metamorphism / granulites</td>
</tr>
<tr>
<td>601 - 700</td>
<td></td>
</tr>
<tr>
<td>701 - 800</td>
<td></td>
</tr>
<tr>
<td>801 - 1000</td>
<td></td>
</tr>
</tbody>
</table>
Pressures

Pressure (kbar)

- < 3
- 3.1 - 6
- 6.1 - 9
- 9.1 - 12
- 12.1 - 15
Apparent geothermal gradients

Legend

Metamorphic gradient (°C/km)

- ▲ < 20
- ▲▲ 21 - 30
- ▲△ 31 - 40
- ▲▼ 41 - 50
- ▲● 51 - 60
Tectono-metamorphic evolution

Miller et al., in prep.
Conclusions

• Cold apparent geothermal gradients suggest subduction/collisional setting (E Burkina Faso, N Ghana)

• Mineral deposits occur form over a wide range of metamorphic conditions

• Target for subduction, collision, back-arc and ocean floor related deposits

• Evidence for zones of crustal thickening (up to 40 km), rock burial and exhumation during Eburnean orogenesis
Conclusions

• **Greenschist facies rocks** occur in upper crustal levels and their metamorphism may be **contemporaneous** with that of the **high grade rocks**. The **contacts** with mid- to lower crustal rocks are often **tectonic** (N Ghana)

• We can find zones of **contact metamorphism**... but in most of the cases, it **overprints previous regional metamorphism**

• Correlation of metamorphic events across the craton is difficult due to the **lack of precise geochronological data**
Liberia Mali Guinea Niger Burkina Faso
Senegal Togo Sierra Leone Mauritania Côte d'Ivoire

Project Broker & Coordinator

36 Sponsors

11 Sponsors in kind (Geological Surveys)

22 Research and Capacity Building Partners